

Introduction to Physical Science

Skills Scientists Use

- Science is the study of the natural world. Scientists use the skills of observing, inferring and predicting to learn more about the natural world.
- Observing means using one or more senses to gather information.
- Inferring is when you explain your observations.
- Predicting means making a forecast of what will happen in the future based on the past experience or evidence.

The Study of Matter and Energy

 Physical science is the study of matter, energy, and the changes they undergo.

- Branches of Physical Science
- Chemistry is the study of the properties of matter and how matter changes.
- Physics is the study of matter, energy, motion, and forces and how they interact.

Scientific Inquiry

- Scientific inquiry refers to the different ways scientists study the natural world.
- The process that scientists use in inquiry include posing questions, developing hypotheses, designing experiments, collecting and interpreting data, drawing conclusions, and communicating ideas and results.

The Process of Inquiry

Posing questions

 A hypothesis is a possible answer to a scientific question or explanation for a set of observations.

• Designing an experiment

- A parameter is a factor that can be measured in an experiment.
- In a well-designed experiment, only one variable parameter is purposely changed: the manipulated variable. The variable parameter that is expected to change because of the manipulated variable is the responding variable.

<u>The Process of Inquiry</u> <u>Continued</u>!

 An investigation in which only one parameter is manipulated at a time is called a controlled experiment.

The Process of Inquiry Continued!

- Collecting and Interpreting Data
 - Data are facts, figures, and other evidence gathered through observations.
 - A conclusion states whether or not the data supports the hypothesis.
 - Communication is sharing ideas and conclusions with others through writing and speaking.

How Science Develops

- Scientists use models and develop theories and laws to increase people's understanding of the natural world.
- A model is a picture, diagram, computer image, or other representation of an object or process.
- A scientific theory is a well-tested explanation for a wide range of observations or experimental results.
- A scientific law is a statement that describes what scientists expect to happen every time under a particular set of conditions.

Mathematics and Science

- An estimate is an approximation of a number based on reasonable assumptions.
- Scientists must sometimes rely on estimates when they cannot obtain exact numbers.
- Accuracy refers to how close a measurement is to the true or actual value.
- Reproducibility refers to how close a group of measurements are to each other.
- Scientists aim for both accuracy and reproducibility in their measurements.

Accuracy and Reproducibility

Neither Reproducible nor Accurate

Reproducible but Not Accurate

Both Reproducible and Accurate

Significant Figures and Precisions

- Significant figures in measurement include all of the digits that have been measured exactly, plus one digit whose value has been estimated.
- Precision is a measure of the exactness of a measurement.
- Scientists use significant figures to express precision in their measurements and calculations.

8.9 Significant Figures

© Pearson Education Inc. publishing as Pearson Prentice Hall All rights reserved

Sample Problem

 To find the area of a surface, multiply its length by its width. Suppose a sheet of paper measures 27.5 cm by 21.6 cm. What is its area?

Solution

- $A = L \times W$
- 27.5 cm x 21.6 = 594 cm²

• What is the area of a ticket stub that measures 3.5 cm by 2.2 cm?

Solution

- $A = L \times W$
- $3.5 \text{ cm x} 2.2 \text{ cm} = 7.7 \text{ cm}^2$

Graphs in Science

- You can think of a graph as a "picture" of your data.
- Line graphs are used to display data to show how one variable (the responding variable) changes in response to another variable (the manipulated variable).

8.10 Plotting a Line Graph

rrcon Edu

Graphs Continued

- A line graph in which the data points yield a straight line is called a linear graph.
- A line of best fit emphasizing the overall trend shown by all the data taken as a whole.

8.11

Drawing a Line of Best Fit

Tips for Drawing a Line of Best Fit

- If the data points seem to follow along a straight line, draw a straight line.
- Include as many data points as possible directly on the line.
- For data points that don't easily fit on the line, try to have the same number of points above the line as below the line.

on Education Inc

- The slope of a graph line tells you how much y changes for every change in x.
- Slope = Rise / Run or $Y_2 Y_1 / X_2 X_1$
- A nonlinear graph is a line graph in which the data points do not fall along a straight line.
- Line graphs are powerful tools in science because they allow you to identify trends and make predictions.

8.12

nn Prantica Hall All richte .

rcon Education Inc

8.13 Trends in Graphs

D Pancon Education Inc. nubliching ac Pagneon Prontice Holl All righte soco